رنگ آمیزی دینامیکی یک گراف و مجموعه تعیین کننده ی آن

پایان نامه
چکیده

هر رنگ آمیزی واقعی یک گراف رنگ آمیزی دینامیکی آن گراف می باشد اگر همسایه های هر رأس از درجه حداقل 2 در آن در حداقل دو کلاس رنگ قرار گیرند. در این رساله به بررسی عدد رنگی دینامیکی یک گراف و مقایسه آن با عدد رنگی واقعی خواهیم پرداخت. همچنین برخی مسائل کلاسیک در رنگ آمیزی واقعی مانند الگوریتم حریص، کران مینیمم درجه گرافهای رنگ بحرانی رأسی و... در رنگ آمیزی دینامیکی بیان خواهد شد. مجموعه و عدد تعیین کننده برای رنگ آمیزی دینامیکی یک گراف را تعریف کرده و این عدد برای برخی گرافهای خاص بدست می آوریم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مجموعه های تعیین کننده در رنگ آمیزی راسی گرافها

گراف دلخواه g دارای یک k- رنگ آمیزی معتبر است . اگر تخصیص k رنگ متفاوت به راسهای g وجود داشته باشد به طوری که هیچ دو راس متصل یک رنگ یکسان نداشته باشند به کوچکترین مقدار k عدد رنگی گراف می گوییم . در گراف دلخواه g به مجموعه ای از راس ها با یک رنگ آمیزی داده شده ، یک مجموعه تعیین کنند رنگ آمیزی راسی g گوییم هر گاه بتوان این رنگ آمیزی را به طور منحصر به فرد به یک k رنگ آمیزی از راس های g توسعه د...

رنگ آمیزی لیستی منصفانه ی گراف ها

فرض کنید مجموعه یال_های e(g) باشد. یک k-رنگ_آمیزی رأسی مجاز از گراف g، یعنی تخصیص k رنگ به رئوس g به گونه_ای که رأس_های مجاور هم رنگ نباشند. یک رنگ_آمیزی لیستی تعمیمی از مفهوم رنگ_آمیزی معمولی است، به این ترتیب که به هر یک از اجزای گراف، مجموعه_ی دلخواه از رنگ_ها نسبت داده می_شود و برای رنگ_آمیزی هر جزء باید از رنگ لیست متناظر آن استفاده شود و یک رنگ_آمیزی مجاز برای گراف به_دست آید. لیست ت...

رنگ آمیزی منصفانه ی گراف ها

فرض کنید g‎ یک گراف متناهی، غیرجهت دار و ساده با مجموعه رئوسv(g) و مجموعه یال های‎e(g) ‎ باشد. یک ‎ -kرنگ آمیزی رأسی از گراف g ، یعنی تخصیص ‎ k رنگ به رئوس g ‎به گونه ای که رأس های مجاور هم رنگ نباشند. اگر در گراف‎ g ‎یک -‎ k ‎رنگ آمیزی وجود داشته باشد به طوری که اختلاف اندازه ی کلاس های رنگی، حداکثر یک باشد، آنگاه گراف g را -k رنگ پذیر منصفانه گویند. کوچکترین عدد صحیح k ‎که به ازای آن گرافg ،...

15 صفحه اول

رنگ آمیزی گراف فازی

رنگ آمیزی گراف فازی یکی از مهم ترین مسائل بهینه سازی ترکیبیاتی است. بسیاری از مثال های عملی مانند جدول زمانی، خوشه بندی شبکه ها و کنترل نور ترافیک‏ را می توان به عنوان مسأله رنگ آمیزی مدل بندی کرد. ‎ مسأله رنگ آمیزی فازی متشکل از تعیین عدد رنگی از یک گراف فازی و تابع رنگ آمیزی مرتبط با آن است. ‎ در این پژوهش‏، ابتدا مفاهیم و مقدمات اولیه فازی بیان می شود، سپس گراف فازی و مکمل آن توضیح داده می...

رنگ آمیزی پویای گراف ها

در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023